MODEL ANALISIS DALAM PENDUGAAN PROSES PRODUKSI GULA TEBU (Studi Kasus di PT. Madubaru PG/PS Madukismo)

Authors

  • Wiji Astutik Program Studi Teknologi Hasil Pertanian, Fakultas Teknologi Pertanian, Institut Pertanian (Intan) Yogyakarta
  • Raden Sugiarto Program Studi Teknologi Hasil Pertanian, Fakultas Teknologi Pertanian, Institut Pertanian (Intan) Yogyakarta
  • Yulius Kiswanto Program Studi Teknologi Hasil Pertanian, Fakultas Teknologi Pertanian, Institut Pertanian (Intan) Yogyakarta

Keywords:

land area, sugarcane, granulated sugar, non-linear regression, luas lahan, regresi non linear, tebu, gula pasir

Abstract

Indonesia has the potential to become a world sugar producer because of its agroecosystem, land area, and supportive workforce. In addition, the prospect of the sugar market in Indonesia is quite promising with a consumption of 4.2 – 4.7 million tons/year. Sugar factories have a very important role in producing sugar, but most sugar factories in Java are experiencing obstacles so that sugar imports are still carried out. This is because the production factors have not been managed properly so that it affects national sugar production. Madukismo Sugar Factory is the only Sugar Factory and Spiritus Factory in Yogyakarta Province that carries out the task of making the national food procurement program a success, especially sugar. However, lately production has experienced ups and downs, so it is necessary to develop an estimation model for sugar production, milled sugarcane needs and sugarcane land area with the help of the Sigma Plot application program.

This study uses quantitative data in the form of time series data in the last five years, from 2017 to 2021 with a secondary data collection method. The results of the study show that the performance of the factory with the largest land area in 2019 was 6,503.62 Ha, the highest number of milled sugarcane in 2017 was 3,518,864 quintals, and the highest sugar production in 2018 was 248,047 quintals.

The estimation of the sugar production analysis model follows the formula: f = 34.1105 + (7.2355*x) + (0.0534*y), with x = land area (ha) and y = milled sugarcane (ku) and with the value of the determination coefficient R2 = 0.878 or it can be said that the model is quite valid or with the accuracy of the MAPE (Mean Absolute Percentage Error) estimation rate of 14.307 % (good). In the estimation of the sugarcane demand analysis model, the value of R2 = 0.8828 or quite valid with the formula: f = 37393.3219 + (123.8289*x) + (10.6571*y) for x = sugar production and y = sugarcane demand or with an accuracy of 3.86% MAPE estimation rate (high category). As for the estimation of the analysis model of land area provision following the formula: R2 = 0.7955 or quite valid with the following model formula: f = 1459.2069 * exp(-0.5*(((x - 826.558.2672)/454.771.6649)^2 + ((y-53.791.8702)/ 36572.533)^2)) with x = sugar production (Ku) and y = land area (Ha) and with R2 = 0.9215 or valid and with an accuracy of 15.292% MAPE estimation rate in the good category.

References

Apriawan. (2015). Analisis Produksi Tebu dan Gula di PT Perkebunan Nusantara VII (Persero). Yogyakarta: Universitas Gajah Mada.
Basri, R. d. (2004). Penilaian Kinerja dan Organisasi. Jakarta: Gramedia Pustaka Utama.
BPS. (2020 dan 2021). Konsumsi dan Produksi Gula. Jakarta: BPS RI.
Churmen, I. (2001). Menyelamatkan Industri Gula Indonesia Edisi I. Jakarta: Millenium Publisher.
Daniel, M. (2004). Pengantar Ekonomi Pertanian. Jakarta: Bumi Aksara.
Indrawanto, S. P. (2010). Budidaya dan Pedoman Pembinaan Kelompok Tani dan Gabungan Kelompok Tani. Kementerian Pertanian Nomor 82/Permentan/OT.140/8/2013.
Joesron, T. S. (2003). Teori Ekonomi Mikro Dilengkapi Beberapa Bentuk Fungsi Produksi. Jakarta: Salemba Empat.
Julianti. (2017). Faktor-Faktor Yang Mempengaruhi Produksi Gula Pada PT. Perkebunan Nusantara X Persero pabrik Gula Takalar. Makassar.
Nugrahayu, R. (2016). Penerapan Metode Balanced Scorecard Sebagai Tolak Ukur Pengukuran Kinerja Perusahaan. Jurnal Ilmu dan Riset Akuntansi, 10.
Putong, I. (2002). Pengantar Ekonomi Mikro dan Makro. jakarta: Edisi Kedua, Penerbit Ghalia Indonesia.
Srimindarti, C. (2004, April). Balanced Scorecard Sebagai Alternatif Untuk Mengukur Kinerja. April.
Syafri, A. (2018). Faktor-Faktor Yang Mempengaruhi Produksi Gula di PT. Madubaru (Madukismo) Yogyakarta. 13-15.
Tangkilisan, H. N. (2007). Manajemen Publik. Jakarta: Grasindo.
Wahyudi. (2013). Pemanfaatan Kulit Pisang (Musa Paradisiaca) Sebagai Bahan Dasar Nata De Banana Pale Dengan Penambahan Gula Aren dan Gula Pasir. Universitas Muhammadiyah Surakarta.
Widiatmaka, S. H. (2007). Evaluasi Kesesuaian Lahan dan Perencanaan Tatguna Lahan. Yogyakarta: Gadjah Mada University Press.
Wijayanti, W. (2008). Pengelolaan Tanaman Tebu (Saccharum officinarum L.) di Pabrik Gula Tjoekir Ptpn X, Jombang, Jawa Timur. Bogor: Institut Pertanian Bogor.

Downloads

Published

2024-08-27